Horizons of stability in matrix Hamiltonians

نویسنده

  • Miloslav Znojil
چکیده

Non-Hermitian Hamiltonians H 6= H possess the real (i.e., observable) spectra inside certain specific, “physical” domains of parameters D = D(H). In general, the determination of their “observability-horizon” boundaries ∂D is difficult. We list the pseudo-Hermitian real N by N matrix Hamiltonians for which the “prototype” horizons ∂D are defined by closed analytic formulae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Hamiltonians with an algebraic guarantee of unbroken PT −symmetry

Although the quantum bound-state energies may be generated by the so called PT −symmetric Hamiltonians H = PH†P 6 = H where P is, typically, parity, the spectrum only remains real and observable (i.e., in the language of physics, the PT −symmetry remains unbroken) inside a domain D of couplings. We show that the boundary ∂D (i.e., certain stability and observability horizon formed by the Kato’s...

متن کامل

On Singular Hamiltonians: the Existence of Quasi-periodic Solutions and Nonlinear Stability

In this note, we announce results concerning the existence of quasiperiodic solutions for a class of singular Hamiltonians, and the nonlinear stability of singularities (as opposed to equilibria). A third result concerns the existence of bounded, connected and open invariant sets in the neighborhood of singularities. Historically, the existence of quasi-periodic solutions and nonlinear stabilit...

متن کامل

A stable iteration to the matrix inversion

The matrix inversion plays a signifcant role in engineering and sciences. Any nonsingular square matrix has a unique inverse which can readily be evaluated via numerical techniques such as direct methods, decomposition scheme, iterative methods, etc. In this research article, first of all an algorithm which has fourth order rate of convergency with conditional stability will be proposed. ...

متن کامل

Fuzzy Relational Matrix-Based Stability Analysis for First-Order Fuzzy Relational Dynamic Systems

In this paper, two sets of sufficient conditions are obtained to ensure the existence and stability of a unique equilibrium point of unforced first-order fuzzy relational dynamical systems by using two different approaches which are both based on the fuzzy relational matrix of the model.In the first approach, the equilibrium point of the system is one of the centers of the related membership fu...

متن کامل

Reducing the Prediction Horizon in NMPC: An Algorithm Based Approach

In order to guarantee stability, known results for MPC without additional terminal costs or endpoint constraints often require rather large prediction horizons. Still, stable behavior of closed loop solutions can often be observed even for shorter horizons. Here, we make use of the recent observation that stability can be guaranteed for smaller prediction horizons via Lyapunov arguments if more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008